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INTRODUCTICN

ayer subject to forces is divisable

|

The motion of elements in a fluild
into a general systematic one and into another one due to eddies of differing
sizes subject to random fluctuations. Convective motion takes place if one,
or nc¢ "2, of the following conditions is satisfied:

a) The lower surface of a fluid layer is heated relative to the top

layer.

b) The top layer of the fluid is cooled relative to the lower layer.

c) A fluid of relatively less density is injected at lower levels.

d) One, or more, of the above conditions is combired with Coriolis

forces or a magnetic field in case of an icnized fluid.

The finite values of viscosity, concuctivity or diffusivity of a fluid
allow topheaviness to be mainteined before the onset of convective lnstability.
When the temperature height distribution under steady conditions is not linear,
as in a gas layer, some remarks are called Tor. This is attempted here.
HISTORICAL

Early in this cenbury, Benard (1901) showed that when the lower surface of

thin viscous liguid layer was heated, convective instability set in only after
the temperature dlfference beitween the lovwer and upper surfaces exceeded a limiting
value.

Aichi (1907) and Rayleigh (1916) derived a quantitative criterion of the

possible top heaviness that could be maintained in a thin viscous liquid layer T ..

-

from belcow before the onset of instability based on the hydrodynamical equations

of motlon of wvhe fluid layers, the eguation of continuity, the equation of state

end the efuation of heet transport in licuids following Boussinesg. Under steacly
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Farly in this century; Benard found that thin, viscous liquid layers
heated from below broke up into almost regularﬁpolygonal cells. From earlier
theoretical investigations, expressions were opbtained for the critical temperature
gradienty, it being assumed constant with height, for the onset of instability.
Measurements in the atmosphere indicated that the temperature differences between

layers r.ar the ground often attain several times the maximum predicted temperature

~differences. This could be partly accounted for by the use of nonlinear (hyperbolic

sine) temperature distribution as found by measurements. The temperature height
distribution could in turn be explained in terms of radiative heat transfer due
to  layers of water vapour in the atmosphere. The corresponding problems with
exponential and sinusoidal temperature distributions Lave now been solved.
Explicit criteria for the onset of convective instability have Dbecua obtained.
The critical temperature difference is larger (smaller) if the temperature -

height curve is concave (convex) upwards.




conditions, the temperature decreased linearly with height in the ligquid.
Rayleigh reduced the problem to the solution of a single sixth order linear

differential equation with constant coefficients. Under c%undary conditions:

i
both top and bottom free, he derived that R = Bg}_ocp’l“l / ket < 2% (i)

where p is the density of the liquid,
cp the specific heat at constant pressure,

k the coefficient of molecular conductivity,
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cefficient of molecular viscosity,
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thickness of the fluid layer,

0o a constant reference temperature,

g the value of gravity, and

B the negative gradient of temperature with height in the liquid layer
(the value of B is taken as positive). In & liguid layer, 760 is replaced by

the coefficient of thermal expansion. .

The actual values of viscosity and conductivity are very small in air that

for criteria there, larger corresponding entities based on eddy considerations

(eddy conductivity or diffusivity) by G.I. Taylor (1915) have been used. Low

o

and Brunt (1925) =po

gradient with height in the lower atmosphere particularly near the ground.
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ied the criterion to derive the maximum possible temperaturs:

Jeffreys (1926, 1928) solved the sixth order differential equation with bota

the boundaries as rigid. In his later paper (1928) he stated that a direct
substitution of a Fourier expansion in the differential equation led to dAiffi-

culties and adopted an ad hoc method of solution. Low (1929) factorised the

differential operator of the equation considering it as a sum of two cubes.
CALSO

He consideredﬁthe case wihen one boundary was free and the other rigid.
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cp heaviness in a liquid layer could be had by pouring a highly volatile
liguid over a less volatile but more viscous licuid Iaye:
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er. The top surface would



The number of sides of the possible regﬁlar polygonal cells in which the
liquid sheet bdbreaks up, due to convective instability, had several times been
given as 3 to 7. on grounds of symmetry, only regular hexagons, squares,
_equilateral triangles and parallel bands are only possible. (Malurkar, 1936,
1937a) .

Experimentally, from about 1928, creation of polygonal cells in liquid
mixtures was once again undertaken at the Imperial College of Science and
Technology (London) by Gilbert T. Walker and his collaborators to find analogies
to cloud patterns. Later, David Brunt and his co-workers in the same College
attempted verifications of theories with a view to meteorological applicatiocns.
Schmidt and Milverton (1935), also in the same College, carried out elaborate
experimental confirmations in the Engineering Section.

In discussing 'Dynamics of Thunderstorms'®, the author (l957a, 1943%) tried
to show that the convective instability brought about by uniformly stratified
top heaviness could not give rise to the instability needed in thunderstorms
(as used to be stated often potentially colder air being superposed on potentially
warmer air initiating and maintaining thunderstorms) . In that discussion, the
top heaviness brought about by the superposition of fluid layers of differing
density was briefly considered (e.g. a dry stream over a moist one). The thermal
structure was takea for simplicity as isothermal. The equation of heat transport
was replaced by the diffusion equation (Fick's). The density variation with height
was taken as linear. The variations in viscosity were ignored to & first approxi-
mation. The criterion of convective instability could be expressed in terms of
the difference of density of top and bottom layers almost similar to Rayleigh

criterion above.



ROLE OF RADIATION EFFECT

The actual temperature gradient with height near the ground on sunny
days was much more than the limits obtained above. Among the additional
hypothesis, the one about the modifiéation introduced by radiative transfer
seemed promising. George C. Simpson (1928) had attempted to fit numerically
& temperature height curve of the atmosphere by taking account of the effect
of the stratified layers of water vapour on the radiative transfer of heat
radiation. Brunt (1929, 30) considered the modification, due to the effect
of water vapour in layers, on the equation of heat transport. He added to
the eddy diffusivity term in the Taylor type egquation, one due to radiation

(KE * Xg instead of KE). The form of the equation of heat transfer remained

unchanged. Under steady conditions, the temperature height curve remained
linearf

But the tempersture measurements, on a hot sunny afternoon near the
ground (flat surface) which was producing inferior mirages showed that in
about the first twenty centimeter layer, it decreased with height as a hyper-
bolic sine curve. At similar height interwvals, above that height, the
temperature could be considered as almost constant. (Malurkar and Ramdas,
19%2) . The température height curve over a heated flat plate (Ramdas and
Malurkar, 1932) wes also found to be similar. In the small height interval
where the mean temperature gradient was large, the difference between the
bottom and the top layers was ten or more times the expected maximum value
given by Brunt (1930). Malurkar and Ramdas (1932) advanced an explanation
for the hyperbolic sine temperaturé height curve by assuming that heat radiation
was absorbed and emitted in successive layers of water vapour near the ground.
The term due to radiation was found to be distinct and could not be added to
the heet diffusivity coefficient. Roberts (1929-30) had earlier shown that

that the term due to radiation was not similar to one due to heat diffusivity.



Thg radiative effects depend on the temperature and absorptive contents of
even distant layers while the diffusivity or heat conductivity effects depend
on local gradients of temperature and of density. Treating the effects of
radiation and of heat diffusion as of distinct types, a small tempefature
disturbance at a lower level would get damped in its progressive movement
upwards (Malurkar, 193k).

Under steady conditioné, the modifications could explain a hyperbolic
gine temperature height cruve. The nature of the temperature height curve and the
maximum possible temperature difference that could be maintained in a top
heavy layer of fluid for a given temberature height curve could be treated
as two independent parts of a problem. (Malurkar, 1937c) . 1In the equation
of heat transport, the addition of terms due to radiative effect, could from
a purely mathematical point of view be ccnsidered even as empirical additions
from observations. The validity of the explanation of the temperature height
curve would not prejudice the derivation of the possible maximum temperature
difference between the two layers.

Digressing slightly; if, in'layer of fluid, the temperature height curve
( 0, gg is concave upwards, the value of d2$- is positive. Then under steady

az ‘
conditions, the temperature at every level is lower than in the linear case.
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it shoﬁs that less heat has been carried up from the source at the bottqm.zg

every higher level or that more heat is transferred or dissipated away from every
level than in the case of a linear curve. A possible mechanism which could carry -
away heat from every layer might be radiation from successive levels resulting

in a net loss of heat. It is conceivable that there might be rare instances

when there is a net gain of heat in every layer due to some process. Then the

. 2 .
temperature height curve would be convex upwards and "o negative. Enalll
) x fd.
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Waile in the case of liquids, the temperature height distribution is linear,
in the case of gas layers it would be too much of a restriction. It would be
useful to-obtain criteria of convective instability of fluids when under steady
conditions, the temperature height curve is concave or convex upwards.

RESUME OF THE HYPERBOLIC SINE CURVE CASE

If Z is the height measured upwards, the temperature height structure for

the varying part was taken as

BT sinh o (T-27) op BT sinh yE
sinh T sinh ™

if m(T-%) =T¢ and My = aT . . . (11)
B is now the mean negative gradient of temperature between O and T, and oF

is a constant. The resulting basic differential equation was: if b° = o2 + y2

(didéz - az)2 sech v& (d?dgz - 1) x = -Ra®mr cosech Tr X ... Co(z11i)

where X was g function of the temperature, a® was a constant and other symbols
ha&e been explained’earlier.

| The equation simplifies to those of Aichi, Rayleigh and others if vy = O.
The methods of solution adopted by Jeffreys and Low for linear differential
equations with constant coefficients could not be extended easily. Malurkar (l957b)
formulated, for the first time, the use of a series solution for the type of
ecuations' arising in stability problems. Instead of a direct substitution of an
expansion in a set of orthogonal functions in the differential equation, the latter
Wwas split up into two suitable parts and the series expansion was substituted in
only one part. The résulting differential equation was completely solved taking
account of boundary conditioms.: A.COmparision of this solution with the initial
assumption led to an explicit determination of all the coefficients. Mlurkar
and Srivastava (1937) verified that the méthod led to earlier results by solving

& slightly generalised Rayleigh-Jeffreys equation.
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The above led to a consistency condition of an infinite determinant
being equated to zero. The value of Ra® could be obtained by successive
approximations. Ta a first approximetion, the smallest value of Ra® in
the case when both boundary suffaces are taken as free (Rayleigh type),

.

leads to-the maximum temperature difference criterion:

R = BgpepT /v m* < ﬁ}iﬁ;lf {1+ e 2} ces (&)

L(1+a%)

with a~ = 3 (see later for the minimal value) the above is reduced to

27 11l 2
E_(l+12Y)‘

Even for other types of boundary conditions, the criteria
of maximum pessible temperature difference increased.

Considerable work on fluid instability has appeared in its various
aspects in recent years. A reference to later memoirs and treatises (Sutton,
1950; Backus, 1955; Lin,-l955; Chandrasekhar, 1961) may be made. However,
the equation of heat transport has b;enbnearly the same as that given by

Rayleigh.

EXPONENTTIAL TEMPERATURE - HBEIGHT CURVE

The same equation of heat transport used for the hyperbolic sine temper-
ature height decrease is valid also for the expcnential temperature height
decrease case. Such exponential temperature decrease with height can occur

in geophysical problems.

EQUATIONS
Také xyz as a rectangular system of coordinates with z axis directed
: e L él;?l
apwards; u, v, and w as components of velocity in a fluid layer; f?as the ]';Qﬁ !

density of the fluid;/éaas the pressure at xyz; g as the value of gravity;
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v as the kinematic coefficient of viscosity and v' as the second coefficient

of viscosity. The equations of motion can be written as:

ip %/t b(u.,v,w) - vpéz(u,v,w) - (V/3 +v') P(a/a% d/3y, d/az) V'V"‘/
(Bu/au'+ av/ay + aw/az) = - (%/ax, é/ay, .a/az)/Qi -(o, o, l@g) (1)
where @2 = 575X2 + 673 2 ¥ 2
= y- +  [az

The equation of continuity is

J./P d/dt + (au/ax_wu §v/ay + aw/az) =0

If E be the heat energy that crosses a unit layer at Xyz apart from
that due to heat conductivity or d}ffusivity, and if ¢ be the temperature
in excess of a given constant one g, (attained above a certain height),
the equation of heat transport can be:

e /at = e - (Fagr By By VY (3)
If the total variation of temperature in the layer is small compared with
the actual magnitude of temperature involved, this equation can be simplified
to a good approximation, to
chP d(P/élt = k(\zm - o) §7 X (4)
where o is a c&nstant. (Malurkar énd Ramdas, 1932; and Malurkar, 1932).

If the variations of pressure in the.layer are small enough to be
neglected,.the equation of state would be: F’(eo + m) = @590 (5)
Apart from that due to this temperature effect, the density variations in
the layer become and are taken here as negligible.

Assuming that steady conditions exist, the equations (1) to (4) reduce -

to: |
Bpi/az + gfi = 0 and achi/azz = achi ' (6)

.where i is the subscript denoting steady conditions. Let p = pi+p';

P =pi + p' ete. Neglecting the squares and products of small quantities
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(departurés from steady conditions), the above can be simplifiea as before
) J 2 2. 7
9/ =/é V—K) ~ee L
5953?/13 + W+ )zg (f 527

%)
ana (- —Laat)g 2%/52 (7= EZ% Alj?j
@) e O,

+ 7L Cé(alf/x"" ? WD/;’) [ EPEL

T 00 2 0
1 133 g (7= ]

+57}9°i(4 +J D/é S 1oz

L (8)

(Malurkar, 1937c) .

For the present, the terms on the right hand side of equation (8' can be

neglected in comparlslon with the other ones. Hence equation (8) becomes.

VX5 250 (7= - 82 %607
| + fPC,» (5"%7&1 + ’0/27)— e ()

If there be a tran51t10n from stable to unstable conditions, it should oceur

" when /ét = 0 in the above and hence
T (TP + Gt (P )~

To the same order of approximation, the steady state of value of QP/az

J?)

-

could be substituted in the denominator of the first term.

1(Ipgrmy)

Assume, as usual, that o' = ¥e where o' = ¢ - ¢i. Then

Fhfpn =0 = PG 5 PP = A

and . 2 2
( dz’- - m - OC)’Z/

2/ _., " ot
(az | m) a!)ﬂ/d

o g,@* e
&;ﬁc 7".)?; | (n)
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The temperature height curve in case of an exponential decrease of

2
m2g

T‘z(—i, ) and b2 a.2 + rz the basm equatlon of the problem reduces to:

(a/jgg:z. a,) £ "’”f(d‘/gfi —5),{’
= —-/?alrr?( /(5 )

where R = ngcpT4/kveoTl4.

As the gradieﬁt of témperature with, height is not constant, this linear
differential equation has also not got constant coeeficients. The method of
solution _follow,s that used earlier. (There‘are sever{a.l mispri'nts on p; 2'74

and p. 275 in Ivhl_urkar, 1937¢; but htye have not been carried over in later
mes) o L £ &

In the interval Oé%é‘]\assume that ¥ W S ,Sbn Sf‘

o . , ...615)

Substltute this series for X only on the rlght hand sideé of equatlon (12).

S (e -a2)’e *'f(ddgi =y
= —paTr/Ee™) [T Remse) e

This equation is solved, by taking 1n1t1ally

,V 5/“5 (;[ c/(fl' —_ y% AJAJ CO&./.,/ ,4 Ay Ern AL

= 2fA, BTG € caska(ms L)
«H{A + B(Tp-E)f € senk alT2=E)
f -
2___ P 5/. S&%S
+CL_)" '}

- C/.’p_f)

- /?0. Tf/(é‘ /) {

l ‘ . - . . ,d?"r\ C(JQ' '
temperature with height can be taken as ¢i = BTeG'(T Z')/(emT-l). il
" where T is the thickness or depth of the fluid layer and B is the mean
negative gradient of temperature with height.
- . ’ /:fer,(',', -
Choosing a new variable Tg=ﬂ(T-Z) and with the notation "}' = al; - L by



where Ao, Bo, A and B arefconstants depending on particular boundary
conditions. Though the method of solution could be used to solve -explicitly
for X, the criterion of convective instébility under usual type of boundary
conditions could be had from the above ‘s’ceps. The 'bOundary:conditions for

X get incorporated without its being evaluated explicitlya The usual boundary
cogditions are:

(a) x, ¥, av/ag?

Oat £ = 0 and at € = m  (Both Free. Rayleigh type) .

(b) x, ¥, a¥/a€ = 0 at § = O and at § =™ (Both Rigid. Jeffreys type).

(¢) x, ¥, @®¥/ae® = 0 at § = 0 and x, ¥, dy/dg = 0 at € =m (One
| Free and the other Rigid. Low and ChandﬁﬁoL-
xasekhar type) .
With the four coﬁmon boundary conditions and with two constants A and B;

equation (15) can be written as: .
(¥ agr =X + Ra> Y2 e e
L senk ansfTay - BT ~E)f & coska lTint)
o+ 2 ceshary {78, -—/)(%ﬂ"‘)j E ff&d@@?‘f)
T » Uy

Q. =7 4 ns g TF (g T Cot ST = /)/(5 7,)
S5

- - 9 o2y ,2)-
- S2+FDY 4 4 E2Y (SP+ )
_Cc:garing the coefficients of Sin nf. it’followsxﬁﬂaAF: '



/gi,/,w + PR+ 62)@,, =

27 /
2 2 oz
T (R bR Ra |

' 7
27 /—Z{B (r-cosnT &7 ) =Alr+ Cos T E /9/
f (nPr62)* - 4 a}/y
- Py e 7
— Send aff{ﬁé/—(m&nlfé‘ )+ A1+ Cosnt ") px

(Fr-a) + (Frra) !
(n*+ 6%-2 a{_‘)z (2 + 6T +2a0)* v/

- {-B (Cosi a7 =)+ c@snfa"f) -+ ,q(;ﬁ{am, /- Cos nre ’z}

ra) ’z _  (F+a)
'G?’lJfbl"zaO (n*+ 6%+ :za/-) /

_J

&7

The other additional boundary conditioas of equation  (16)

‘ : ;
lead to an infinte number of equations linear in ,’l?nS « An infinite

determinant whichi has to vanish follows as a condition of ccnsistency..

7
The elements of the determinant may be denoted as Jn s when
v ?/-_. Ry « The diagonal elements wwould then be j? - ! P
) nn 7 [
The values of / for different boundary conditions are stated nere:

s



fihen ootuxboundaries are taken as rigid (Jeffreys type ),
the value of \j}::s is given by tlhe eguation

(‘72,2,;. é/,)(52+ a,yz 7?2»5' _

%S F2(E 7 Cos Tu.fcc*f&?f—-_/)/ccg 7 1)
(7H=S* 4 p2)% + 4 pRs*

+ Fns(- Cos STV Q/zf@ff7+ Cos mire ™)

(S<cr A ar Q,/)

fC/L #5232 46{2/"2)

+ (C?d’A,Cu + , Y= Cok T /// (r-a) (r+a)

(.7?} ~O —.\Q/j?*_('n—m +2a}’\J

S e _77/“{
- SU«”\«A o { !+ Col W& )7~ (F %)
A < ,/(

LY,
2

(r+bT+ ;zu./'

h‘“t:ij

, . T
(7S + Cfss@/(e-r—i)/—;zrar@_ Ces T ETT)
(SLVL//\CLT—@ A {C/b+12) '4a'lfj/

. - | Py ey TP Ty (=00 Cre )
— (Coshaim-=){l+ CocnTe C - |
(Comh om0l ST i o 2an ™ e b 2T

:\‘
+ 20.r,

Cr=a)
— bc’}\,A GL7T | - fl/ﬂé
C (_n, + b a0k)*

Cr+2) ?
» - 2 ‘2. "r“L
(*+b +QQQJ

(20)

-both the boundaries are taken as ree (Rayleigh type),
erms obecome simple and

2 ~ & f'n CSH o s y
f? — 4 St Cos T CoE S J/Cé:
SIS -,;é'—i-‘)gCnZ_s _}_/./1) - 4/-2-82_}

When

ck
)
[¢5}
ct

L:\S:z.’!_o:z_)ﬁ_
ees (21)
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When both 'ﬂoundax;ies‘ ave t‘é.kell‘ as free -(\@zle/i@/txp‘e\) ) ,_the terms

become simple and

When the top boundary is taken as free and the lower one as rigid

(Low and Chandrasekhar type) then
) [ 2. & . l)?.\ CT
CTb +O )CS - /S

wr - >y
i 7S KZLC CoS TV Cos 877w /)/(_67?“
«g (-2t flf‘ﬁ»s%]

L P 7S CosSTSentaTh | amat (t+ Cogn7 ™)
i 7 Y] s
: :O XN )fd TCASAQAT = SL7A a,?} )(_"?‘ex‘)‘-i-za‘j )-"’4 623‘/’?:/

(r~2) crra) - ?
b2 thr)" (R4 0242 2f>"

+(C kxul/.-r!)(l CosnT € WZS

/ (_\7’(/ —H :—,ZLL/') Q?, ./..(_) ,}.2\,{ /)‘7

-’

- o o TP
RS oo CosARGT i P 2Tl (I-Ss T e/

-",,

(c 4 _/)Cu./z Cegnai — SCmA R }T)L 2.(7‘" *D?jL ,ha:_/,.{}

7r.J Cr-a Crea) )
A= r b2 S22t P+ o>+ 20)>/

—{Casds \27'-,“/{_/—;- Conre

— Snd am {1~ Cat T a""')g cr—a) — L ”9 L 7
Lo+ o 1@”) (>4 bxy 2 ):)‘:J

e Clq:)
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The coﬁsistency infinite determinants vanish only for discrete values
of Ra2$ which,in any particular case,could be got by successive approximations.
The elements of the determinant decrease rapidly with increase of n or of s.
The working would not be prohibitive. As in the case of the hyperbolic
sine temperature height curve, the determinant breaks up when §:= 0, corres-
ponding to the odd and even solutions. The smallest root of Ra® has to be
chosen, and in the degenerate case when fj= 0, the odd solution has to be
selected. The non-linearity of the temperature height curve removes a part
of the dageneracy (a type of symmetry) in the stability configurations. This
would have to be dealt with separately.

Invthe particular case of both boundaries being taken as free (Rayleigh

type), the diagonal elements of the infinite determinant have the same form,

whether the temperature hegiht decrease follows the hyperbolic sine or

exponential curve:

BT sin? ﬂf(%—Z/T) or BT eﬂi(l-z{T)
sinh jf (eﬂg;l)

However, for the same difference of temperature between the top and bottom
boundaries and for the same depth or thickness of the fluid layer, the value

of r would not be the same in the two cases. Under the above conditions, the

. criteria of the maximum possible temperature difference between the lower

and upper boundaries of the fluid have, to a first approximation, neglecting

[X

3%, the same form for the exponential and the hyperbolic sine temperature

height curves given by:

4

Ra® = (l+i§2/4)(i+a2+}2)(1+a2)2 or (1+a%)%{1+(5+a%) 7 /4(1+a%)} ) )
B 1/, .
The value to be taken for a” is l/2+l/6f2+0(r4) leading to R = "'(37'

2
2

|

/

-
l/l/,’..
2

neglecting . The value of R remains unchaged, to a first approximation,

e 2 .. . .
whether the value of a” (characterising the pattern in the horizontal plane)

is takeén from the constant gradient of temperature with height or with the
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exponential and the hyperbolic sine femperature height curves. It follows
that while the non-linearity of the above temperature height curves modify
the norizontal patterns and the maximum possible temperature difference that
could be maintained, the further effect of the change in the horizontal
pattern on the possible maximum temperature difference can to a first approx- '
imation be neglected. Similar results hold good for other types of boundary
conditions.

For the other two types of boundary conditions also, the increase in
the criterion of the maximum temperature difference between the top and
bottom layers of a top heavy fluid structure would exist. While calculations
have Been shown only for the heperbolic sine and the exponential temperature
height cruves, it would be apparent that these represent curves which are
concave upwards. It can be stated that the criterion of the maximum possible
temperature difference between the bottom and top layers of a top heavy fluid
layer increases when the temperature height cruve is concave upwards, froﬁ
the value for a linear temperature height structure. The increase in the
value of the maximum possible temperature difference would be an increasing
function of the departure from linearity of the temberature height curves,
considering those of any one family.

TEMPERATURE HEIGHT CURVE CONVEX UPWARDS

A representative case of a teémperature height decrease curve being convex

upwards can be taken with the variational part of the temperature as

sk sin 7f(1-z/T)
N l"d“/:;/ o BT sin _‘T:‘q{ (2)'")

vt L
§ 0 LT e
Pl ,J’
Wl

2y
Bl

in the interval O < Z < T. The corresponding equation of heat transport

would have to be taken as:
1(2

;;Dcp dop/dt = k(.{i‘2+ “’T?) © VA/ (25)

e L
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¥

< < 7% ._,lg_

where ¥~ is a constant restricted to only small values:

o=

v (( (/(JO‘ v

Following exactly as before, with a similar notation, the basic “?fU?/A
equatioﬁ could be written as:
(6/ag® - &®)3(sec ¥6(a8/a8? - o2 + F)x} = - Ra®rif cosec ™'x (26)
The equation is solved as before in stages assuming X = & Pg sin Sg
5
and subétituting it only on the right hand side of therequation (26% i.e.
(dz/déz—ag)z{séczfé(dz/dﬂ —a2+¥3)y) = - Razﬂféosecﬂﬁr 2 P_ sin s | (27)
The solution of this equation follows analogous steps to that in the /@““é'éjz

:/7/((’/)'\.7 ~

hyperbolic sine (Malurkar, 1937c) and the exponential curve cases.
It is sufficient to point out that a first approximation with both

boundaries free (Rayleigh type), correspcdning criterion would be given by:

R o BT (5 (1) (28)
a2 PERRY
217 11 D - Q. 7 ..-r‘
ox with o = 1/2 oy B= k(1B R= 2L ~LF)

The criterion of maximum possible temperature difference between the
boﬁtom and top layers i1s less than in the constant temperature gradient case.

The possibility of the temperature height curve being convex upwards would
be‘ver rare.

Henée, the criterion of instability of a layer of heated fluid, particularly
in the case of gasses, depends on the temperature height curve in the fluid.
While the temperature difference between the bottom and top layers might be
within the limits of the criteria of stability for one temperature height

structure, it might not be so for another one and vice versa.
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Hales (1935) determined the criterion of instability for a compressible
atmospheric layer. He found that in a dry atmosphere, the adiabatic lapse
rate was a limit for the layer to.be stable. The lapse rate inside the layer
was taken by him as a constant. In the atmosphere, at high levels, often
turbulence is met with over short periocds. There is not much evidence of
super-adiabatic lapse rates there. In addition to other factors which might
have induced such turbulence, the change in the temperature height structure
might also be considered as a coatributory cause. One of the factors which
might be changing the temperature height structure may be the radiative
effects due to incursion of a different absorptive layer. (An elementary

example was considered by the author in 1932).
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